Mixed Finite Element Methods of Higher-Order for Model Contact Problems
نویسندگان
چکیده
منابع مشابه
Mixed Finite Element Methods of Higher-Order for Model Contact Problems
This paper presents mixed finite element methods of higher-order for a simplified Signorini problem and an idealized frictional problem. The discretization is based on a mixed variational formulation proposed by Haslinger et al. which is extended to higher-order finite elements. To guarantee the unique existence of the solution of the mixed method, a discrete inf-sup condition is proven. Approx...
متن کاملMixed finite element methods for two-body contact problems
This paper presents mixed finite element methods of higher-order for two-body contact problems of linear elasticity. The discretization is based on a mixed variational formulation proposed by Haslinger et al. which is extended to higher-order finite elements. The main focus is on the convergence of the scheme and on a priori estimates for the h− and p-method. For this purpose, a discrete inf-su...
متن کاملHigher order temporal finite element methods through mixed formalisms
The extended framework of Hamilton's principle and the mixed convolved action principle provide new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics. In this paper, their potential when adopting temporally higher order approximations is investigated. The classical single-degree-of-freedom dynamical systems are primari...
متن کاملMixed Finite Element Methods for Elliptic Problems*
This paper treats the basic ideas of mixed finite element methods at an introductory level. Although the viewpoint presented is that of a mathematician, the paper is aimed at practitioners and the mathematical prerequisites are kept to a minimum. A classification of variational principles and of the corresponding weak formulations and Galerkin methods—displacement, equilibrium, and mixed—is giv...
متن کاملOn the Stability and Convergence of Higher-order Mixed Finite Element Methods for Second-order Elliptic Problems
We investigate the use of higher-order mixed methods for secondorder elliptic problems by establishing refined stability and convergence estimates which take into account both the mesh size h and polynomial degree p . Our estimates yield asymptotic convergence rates for the pand h p-versions of the finite element method. They also describe more accurately than previously proved estimates the in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2011
ISSN: 0036-1429,1095-7170
DOI: 10.1137/090770072